
Analyzing Multi-Head Self-Attention

MICKUS, Timothee

General layout of this presentation:
1. Self-attentive networks & why we want to analyze them
2. Math tools for analyzing SANNS: Layer-wise Relevance Propagation,

head confidence & L0 based pruning
3. Voita et al.’s findings

NB:
É SANN = Self attentional neural networks, viz. ”Transformer

architectures”

Self-attentive networks & how to analyze them

Analyzing SANN
Actually, we talked about this before

‘Cutting edge technology’:
É BERT (Devlin et al., 2018) on GLUE Wang et al. (2019) for NLU /

embedding
Compare Infersent (Conneau et al., 2017) (76) vs. BERT Large (89)

É Vanilla Transformer (Vaswani et al., 2017) with NMT
Significant gains in terms of BLEU

É GPT (Radford, 2018) / Transformer XL (Dai et al., 2019) for LM
Perplexity down to under 1 bit per character using Transformer XL

É some, like BERT (Devlin et al., 2018) or GPT-2 (Radford et al., 2019)
basically turn out to be broadly applicable to almost any NLP task

But we don’t really know how, or why that works.

4

Analyzing SANN
Attention (?)
Some counter-intuitive facts:
É BERT embeddings basically behave like sentence representations rather

than word embeddings (sensitive to order, not usable for formal analogy,
wdely used in NLU setups)

É Attention over a single item devolves into a linear transformation:

Softmax (q · K T) V =
eq·ki

∑

k j∈K
eq·k j

V

Since K = {ki}= {k j}, this simplifies to:

Softmax (q · K T) V =
eq·k

eq·k V = V

which means that SANN don’t behave similarly wrt. sequences and
singletons

É SANN like the Transformer use multi-heads rather than vanilla
attention, which likewise devolves into a linear transformation

5

Analyzing SANN
Not all hope is lost

Some work has been done in order to understand the behavior of SANNs, eg.: Raganato
and Tiedemann (2018) probe encoder representations as computed by NMT vanilla
Transformers (Vaswani et al., 2017) from English to 7 target languages.
É Attention weight visualisations:

four patterns shared across languages: to the word itself, to the previous word, to the next word, to
the last token in the sentence.

É Induced tree structures:
Attention weights for a given head can be seen as a weighted graph. The induced tree is tested on
an UD treebank, given gold segmentation, tokenization and root. Average UAS F1-score is similar
to a left-branching baseline, best scores are comparable to a right-branching baseline.

É Probing sequence labeling tasks: POS-tag, Chunking, NER, and Semantic tagging
POS best scores are found in the first 3 layers, Chunking in the first 4, NER in layers layers 3 ~ 5,
Semantic tagging in the last 3 layers. Precision ranges from 70% to 90%, error rate from 2% to
50%

É Transfer learning capacities:
Using the EN→DE encoder for EN→TR boosts performances by 1 BLEU

6

Analyzing SANN
Where we are

É Over the last few years, some progress has been made on the
understanding of the mechanical behavior of SANNs:
É Raganato and Tiedemann (2018) showed that NMT Transformers

encoders don’t do everything out of the box, can’t really be said to do
‘syntax’ & require layers and resources to tackle semantics.

É Other works suggest interesting capacities: Voita et al. (2018) study how
NMT Transformers exploit contextual information for anaphora resolution

É Tang, Sennrich, and Nivre (2018) show attention mechanisms focus more
on ambiguous token

É All of these works suggest interesting properties (“contextualization” is
not just an empty word)

É But generally, there’s no formal framework and the observations stem
from ad-hoc tests, which makes it difficult to separate what’s to be
blamed on the probing task from what’s the actual capacities of the
SANN.

7

Tools for analyzing SANNs

LRP
LRP: Layer-wise relevance Propagation
É Works like Raganato and Tiedemann (2018), Voita et al. (2018), and

Tang, Sennrich, and Nivre (2018) mostly consists of on-the-spot tests.
If we are to study SANNs systematically, we may require a more formal
approach.

É Layer-wise Relevance Propagation (LRP) is a mathematical tool to
define how much a given neuron contributes to a given output.
É If a NN θ classifies an item y to a class C , it assigns a score:

Pr(x ∈ C |θ).
É If we consider solely the last layer L of dimension d, we can write this

probability as a function f : Rd → R1,
É we can approximate f as a weighted sum of each neuron: f (x)≈

∑

d
Ld .

É This gives us a score of how relevant each neuron Ld of the layer L is to
the prediction x ∈ C

É we can use the same mechanism to propagate this score to previous
layers, by computing how relevant each neuron in the previous layer L−1 is
to a given neuron Ld in layer L

É if we treat the input as the first layer of computation, we may blame the
classification on specific parts of the input 9

LRP
From pixels to translation

LRP is a fairly new technique, but it has been very quickly applied to NLP
also.
É The tool was first proposed in Bach et al. (2015); in the original setup it

is used for image classification. The general idea was to estimate how
each pixel of the input contributes to the overall classification; cf. also
Binder et al. (2016) for dealing with input normalization.

É The first use of LRP in NLP is that of Ding et al. (2017). Ding et al.
adapt LRP to the seq2seq NMT model of Bahdanau, Cho, and Bengio
(2014)

É Voita et al. (2019) (today’s paper) apply LRP to Transformers, and
focus on how the multi-head attention mechanism works.

10

Confidence
How certain is your head?

É Voita et al. (2019) define a head’s confidence as the average of its
maximum attention weight, excluding the <eos> symbol.

É this, along with LRP, allows us to distinguish which heads are actually
used:

11

Pruning heads
How to drop heads: relaxed L0 penalty
É Technique borrowed from Louizos, Welling, and Kingma (2018), using a variation of

the reparametrization trick (Kingma and Welling, 2013)
É the idea is to encourage the model to ”turn off” heads, using a L0 loss criterion and

specific scalar gates.
É The multi-head attention concatenation is re-written to include one scalar

gate gh per head Hh : (
⊕

h
gh ·Hh) ·W O

É one wants to minimize the L0 loss to maximize the number of gates set to
0: L0(g1, . . . , gh) =

∑

h
(1− [[gh = 0]]), but it’s not differentiable

É so the indicator function is replaced with a Hard Concrete Distribution φh
that assigns the most of its mass to 0 and 1.

É Which gives the regularization term : LC(φ) =
∑

h
(1− P(gh = 0|φh))

É Final training objective is thus L(θ ,φ) = Lxent(θ ,φ) + LC (φ),
with Lxent(θ ,φ) the original cross-entropy loss

É as the model does converge to solutions where gates are either 1 or 0, at test time
the head Hh is ignored iff. P(gh = 0|φh)> P(gh = 1|φh); so the model can be treated
as a Transformer with fewer heads.

12

Less heads, same performances!

What can your head do?
Identifying possible functions

É Voita et al. (2019) suggest heads might do three possible things; they
study these :

1. track relative position words (adjacency patterns in Raganato and
Tiedemann (2018)): a head is deemed positional if 90% of the time the
maximum attention weight is assigned to a specific relative position

2. track syntactic relations: like Raganato and Tiedemann (2018), they
study whether weight is assigned to an item in a dependency relation
(nsubj, dobj, amod, advmod). Heads that have an accuracy of 10%
higher than the baseline of predicting the most frequent relative position
are deemed to track syntactic relations

3. track rare words.
É Many heads don’t really follow any of these patterns.

14

What does your head do?
Studying the functions of relevant heads
É Roughly speaking, the relevant heads have identifiable functions:

É The only head that tracks rare words is only detected with LRP.
É Syntactic dependencies are not equally easily identifiable:

15

Pruning heads
In the encoder: In terms of BLEU

É When all heads in a given layer are pruned, the residual connections
ensures that some information is passed on; if all heads are pruned, the
encoder devolves into an FFN

É We see that even with a very aggressive pruning in the encoder
self-attention, BLEU only drops by at most 1.5

16

Pruning heads
In the encoder: In detail

É The heads that are
pruned first are those
that have less clear
roles

17

Pruning heads
Pruning all attentions: In terms of BLEU

É the same pattern can be
seen: even fairly
aggressive pruning does
not deteriorate BLEU
scores by much

É these results hold even
when training the model
from scratch

18

Pruning heads
Pruning all attentions: In detail

É Clean distinction between
context- and
self-attention across
models: context-attention
preferred over
self-attention (in WMT,
note the effects of longer
input)

É Opposite behavior of
layers in decoder self- and
context-attention: bottom
layers do LM, top layers
condition on source

19

In conclusion...

Conclusion

É LRP can tell apart useless heads from useful ones
É We can highlight the roles of individual heads

É some heads exhibit recognizable behaviors: relative positional marking,
syntactic contextualization, rare word attention

É after pruning, heads mostly exhibit one of these recognizable behaviors
É using a relaxed L0 penalty, two thirds of the heads can be removed while

not loosing more than 1 BLEU point, suggesting that SANNs do not use
their parameters optimally.

21

References I

Bach, Sebastian et al. (2015). “On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation”. In: PLoS ONE 10.7, e0130140. doi:
10.1371/journal.pone.0130140. url:
http://dx.doi.org/10.1371%2Fjournal.pone.0130140.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473.
arXiv: 1409.0473. url: http://arxiv.org/abs/1409.0473.

Binder, Alexander et al. (2016). “Layer-wise Relevance Propagation for Neural Networks
with Local Renormalization Layers”. In: vol. 9887. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 63–71. doi: 10.1007/978-3-319-44781-0_8.

Conneau, Alexis et al. (2017). “Supervised Learning of Universal Sentence Representations
from Natural Language Inference Data”. In: CoRR abs/1705.02364. arXiv: 1705.02364.
url: http://arxiv.org/abs/1705.02364.

Dai, Zihang et al. (2019). “Transformer-XL: Attentive Language Models Beyond a
Fixed-Length Context”. In: CoRR abs/1901.02860. arXiv: 1901.02860. url:
http://arxiv.org/abs/1901.02860.

22

https://doi.org/10.1371/journal.pone.0130140
http://dx.doi.org/10.1371%2Fjournal.pone.0130140
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1007/978-3-319-44781-0_8
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860

References II

Devlin, Jacob et al. (2018). “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: CoRR abs/1810.04805. arXiv: 1810.04805. url:
http://arxiv.org/abs/1810.04805.

Ding, Yanzhuo et al. (2017). “Visualizing and Understanding Neural Machine Translation”.
In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for
Computational Linguistics, pp. 1150–1159. doi: 10.18653/v1/P17-1106. url:
https://www.aclweb.org/anthology/P17-1106.

Kingma, Diederik P and Max Welling (2013). “Auto-Encoding Variational Bayes”. In:
arXiv e-prints, arXiv:1312.6114, arXiv:1312.6114. arXiv: 1312.6114 [stat.ML].

Louizos, Christos, Max Welling, and Diederik P. Kingma (2018). “Learning Sparse Neural
Networks through L0 Regularization”. In: International Conference on Learning
Representations. url: https://openreview.net/forum?id=H1Y8hhg0b.

Radford, Alec (2018). “Improving Language Understanding by Generative Pre-Training”. In:
Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learners”. In:

23

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P17-1106
https://www.aclweb.org/anthology/P17-1106
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=H1Y8hhg0b

References III

Raganato, Alessandro and Jörg Tiedemann (2018). “An Analysis of Encoder
Representations in Transformer-Based Machine Translation”. In: Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP. Brussels, Belgium: Association for Computational Linguistics, pp. 287–297. url:
https://www.aclweb.org/anthology/W18-5431.

Tang, Gongbo, Rico Sennrich, and Joakim Nivre (2018). “An Analysis of Attention
Mechanisms: The Case of Word Sense Disambiguation in Neural Machine Translation”.
In: Proceedings of the Third Conference on Machine Translation: Research Papers.
Belgium, Brussels: Association for Computational Linguistics, pp. 26–35. url:
https://www.aclweb.org/anthology/W18-6304.

Vaswani, Ashish et al. (2017). “Attention Is All You Need”. In: CoRR abs/1706.03762.
arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

Voita, Elena et al. (2018). “Context-Aware Neural Machine Translation Learns Anaphora
Resolution”. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, pp. 1264–1274. url:
https://www.aclweb.org/anthology/P18-1117.

24

https://www.aclweb.org/anthology/W18-5431
https://www.aclweb.org/anthology/W18-6304
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/P18-1117

References IV

Voita, Elena et al. (2019). “Analyzing Multi-Head Self-Attention: Specialized Heads Do the
Heavy Lifting, the Rest Can Be Pruned”. In: CoRR abs/1905.09418. arXiv:
1905.09418. url: http://arxiv.org/abs/1905.09418.

Wang, Alex et al. (2019). “GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding”. In: In the Proceedings of ICLR.

25

http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418

