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General layout of this presentation:
1. Self-attentive networks & why we want to analyze them

2. Math tools for analyzing SANNS: Layer-wise Relevance Propagation,
head confidence & L, based pruning

3. Voita et al’s findings
NB:

» SANN = Self attentional neural networks, viz. "Transformer
architectures”



Self-attentive networks & how to analyze them



Analyzing SANN

Actually, we talked about this before

‘Cutting edge technology’:
» BERT (Devlin et al., 2018) on GLUE Wang et al. (2019) for NLU /
embedding
Compare Infersent (Conneau et al., 2017) (76) vs. BERT Large (89)
> Vanilla Transformer (Vaswani et al., 2017) with NMT
Significant gains in terms of BLEU
» GPT (Radford, 2018) / Transformer XL (Dai et al., 2019) for LM
Perplexity down to under 1 bit per character using Transformer XL
> some, like BERT (Devlin et al., 2018) or GPT-2 (Radford et al., 2019)
basically turn out to be broadly applicable to almost any NLP task
But we don't really know how, or why that works.



Analyzing SANN
Attention (7)
Some counter-intuitive facts:

» BERT embeddings basically behave like sentence representations rather
than word embeddings (sensitive to order, not usable for formal analogy,
wdely used in NLU setups)

> Attention over a single item devolves into a linear transformation:

T eqkl
Softmax (q -K ) V= WV
k;eK
Since K = {k;} = {k;}, this simplifies to:
k

e?
Softmax (q-KT) V = WV =V
e
which means that SANN don't behave similarly wrt. sequences and
singletons
» SANN like the Transformer use multi-heads rather than vanilla
attention, which likewise devolves into a linear transformation



Analyzing SANN

Not all hope is lost

Some work has been done in order to understand the behavior of SANNSs, eg.: Raganato
and Tiedemann (2018) probe encoder representations as computed by NMT vanilla
Transformers (Vaswani et al., 2017) from English to 7 target languages.

> Attention weight visualisations:
four patterns shared across languages: to the word itself, to the previous word, to the next word, to
the last token in the sentence.

> Induced tree structures:
Attention weights for a given head can be seen as a weighted graph. The induced tree is tested on

an UD treebank, given gold segmentation, tokenization and root. Average UAS F1-score is similar

to a left-branching baseline, best scores are comparable to a right-branching baseline.

> Probing sequence labeling tasks: POS-tag, Chunking, NER, and Semantic tagging
POS best scores are found in the first 3 layers, Chunking in the first 4, NER in layers layers 3 ~ 5,
Semantic tagging in the last 3 layers. Precision ranges from 70% to 90%, error rate from 2% to
50%

» Transfer learning capacities:
Using the EN—DE encoder for EN—TR boosts performances by 1 BLEU



Analyzing SANN

Where we are

» Over the last few years, some progress has been made on the
understanding of the mechanical behavior of SANNs:

» Raganato and Tiedemann (2018) showed that NMT Transformers
encoders don't do everything out of the box, can't really be said to do
‘syntax’ & require layers and resources to tackle semantics.

» Other works suggest interesting capacities: Voita et al. (2018) study how
NMT Transformers exploit contextual information for anaphora resolution

» Tang, Sennrich, and Nivre (2018) show attention mechanisms focus more
on ambiguous token

> All of these works suggest interesting properties (“contextualization” is
not just an empty word)

» But generally, there's no formal framework and the observations stem
from ad-hoc tests, which makes it difficult to separate what's to be
blamed on the probing task from what's the actual capacities of the
SANN.



Tools for analyzing SANNSs



LRP

LRP: Layer-wise relevance Propagation

» Works like Raganato and Tiedemann (2018), Voita et al. (2018), and
Tang, Sennrich, and Nivre (2018) mostly consists of on-the-spot tests.
If we are to study SANNSs systematically, we may require a more formal

approach.
» Layer-wise Relevance Propagation (LRP) is a mathematical tool to
define how much a given neuron contributes to a given output.

>

If a NN 8 classifies an item y to a class C, it assigns a score:

Pr(x € C|0).

If we consider solely the last layer L of dimension d, we can write this
probability as a function f : RY — R?,

we can approximate f as a weighted sum of each neuron: f(x)~ > L,.

This gives us a score of how relevant each neuron L; of the IayerdL is to
the prediction x € C

we can use the same mechanism to propagate this score to previous
layers, by computing how relevant each neuron in the previous layer L™ is
to a given neuron Ly in layer L

if we treat the input as the first layer of computation, we may blame the
classification on specific parts of the input 9



LRP

From pixels to translation

LRP is a fairly new technique, but it has been very quickly applied to NLP
also.

> The tool was first proposed in Bach et al. (2015); in the original setup it
is used for image classification. The general idea was to estimate how
each pixel of the input contributes to the overall classification; cf. also
Binder et al. (2016) for dealing with input normalization.

> The first use of LRP in NLP is that of Ding et al. (2017). Ding et al.
adapt LRP to the seq2seq NMT model of Bahdanau, Cho, and Bengio
(2014)

» Voita et al. (2019) (today's paper) apply LRP to Transformers, and
focus on how the multi-head attention mechanism works.
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Confidence

How certain is your head?

> Voita et al. (2019) define a head's confidence as the average of its
maximum attention weight, excluding the <eos> symbol.

> this, along with LRP, allows us to distinguish which heads are actually

used:
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Pruning heads
How to drop heads: relaxed L, penalty
> Technique borrowed from Louizos, Welling, and Kingma (2018), using a variation of
the reparametrization trick (Kingma and Welling, 2013)
> the idea is to encourage the model to "turn off” heads, using a L, loss criterion and
specific scalar gates.

» The multi-head attention concatenation is re-written to include one scalar
gate g, per head Hj, : (@gh Hy) -wP°

> one wants to minimize the Lg loss to maximize the number of gates set to
0: Lo(g1,--->81) = 2(1— [gn = 0]]), but it's not differentiable

> so the indicator functlon is replaced with a Hard Concrete Distribution ¢y,
that assigns the most of its mass to 0 and 1.
» Which gives the regularization term : Lo(¢) = >.(1—P(g, =0|$4))
h

> Final training objective is thus L(6,¢) = L,.,.(6,¢)+ Lc(¢),
with L,,,. (8, @) the original cross-entropy loss

> as the model does converge to solutions where gates are either 1 or 0, at test time
the head H,, is ignored iff. P(g, =0|¢;) > P(g, = 1|¢;); so the model can be treated
as a Transformer with fewer heads.
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Less heads, same performances!



What can your head do?

Identifying possible functions

> Voita et al. (2019) suggest heads might do three possible things; they
study these :

1. track relative position words (adjacency patterns in Raganato and
Tiedemann (2018)): a head is deemed positional if 90% of the time the
maximum attention weight is assigned to a specific relative position

2. track syntactic relations: like Raganato and Tiedemann (2018), they
study whether weight is assigned to an item in a dependency relation
(nsubj, dobj, amod, advmod). Heads that have an accuracy of 10%
higher than the baseline of predicting the most frequent relative position
are deemed to track syntactic relations

3. track rare words.

» Many heads don't really follow any of these patterns.

14



What does your head do?
Studying the functions of relevant heads
> Roughly speaking, the relevant heads have identifiable functions:

Heads relevance for top-1 logits Mean max attn weight Head functions
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> The only head that tracks rare words is only detected with LRP.
> Syntactic dependencies are not equally easily identifiable:
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Pruning heads

In the encoder: In terms of BLEU
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Figure 7: BLEU score as a function of number of re-
tained encoder heads (EN-RU). Regularization applied
by fine-tuning trained model.

» When all heads in a given layer are pruned, the residual connections
ensures that some information is passed on; if all heads are pruned, the
encoder devolves into an FFN

> We see that even with a very aggressive pruning in the encoder
self-attention, BLEU only drops by at most 1.5
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Pruning heads

In the encoder: In detail
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Figure 8: Functions of encoder heads retained after
pruning. Each column represents all remaining heads
after varying amount of pruning (EN-RU; Subtitles).

The heads that are
pruned first are those
that have less clear
roles
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Pruning heads

Pruning all attentions: In terms of BLEU

attention BLEU
heads from from
(e/d/d-e) trained scratch
WMT, 2.5m
baseline 48/48/48 29.6 the same pattern can be
sparse heads  14/31/30 29.62  29.47 seen: even fairly
12/21/25 2936 28.95 . .
3/13/15 29.06 78,56 aggressive pruning dOGS
5/9/12 2290  28.4] not deteriorate BLEU
OpenSubtitles, 6m scores by much
baseline 48/48/48 324 > these results hold even
sparse heads 27/31/46  32.24  32.23 when training the model
131731 32.23  31.98 from scratch
6/9/13 32.27 31.84

Table 2: BLEU scores for gates in all attentions, EN-
RU. Number of attention heads is provided in the
following order: encoder self-attention, decoder self-
attention, decoder-encoder attention.



Pruning heads

Pruning all attentions: In detail
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In conclusion...



Conclusion

> LRP can tell apart useless heads from useful ones

» We can highlight the roles of individual heads
» some heads exhibit recognizable behaviors: relative positional marking,
syntactic contextualization, rare word attention
> after pruning, heads mostly exhibit one of these recognizable behaviors
> using a relaxed Ly penalty, two thirds of the heads can be removed while
not loosing more than 1 BLEU point, suggesting that SANNs do not use
their parameters optimally.
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